

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 <h1 align=”center”>Formal Models for Ledger Rules</h1>

	<p align=”center”>
	
	
	

</p>

Formal and executable specifications for the new features to be introduced by Shelley.

The documents are built in our CI and can be readily accessed using the
following links:

	[Shelley design specification](https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/delegationDesignSpec/latest/download-by-type/doc-pdf/delegation_design_spec): the primary design document for Cardano Shelley.

	[Shelley ledger formal specification](https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/shelleyLedgerSpec/latest/download-by-type/doc-pdf/ledger-spec): the formal mathematical specification of the Shelley era ledger rules.

	[Shelley binary format specification (CDDL)](https://github.com/input-output-hk/cardano-ledger-specs/tree/master/shelley/chain-and-ledger/executable-spec/cddl-files): the binary formats for the Shelley ledger using CBOR CDDL schema notation.

	[Non-integer calculations specification](https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/nonIntegerCalculations/latest/download-by-type/doc-pdf/non-integer-calculations): details on the parts of the Shelley specification that use real numbers.

	[Byron chain specification](https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/byronChainSpec/latest/download-by-type/doc-pdf/blockchain-spec): the formal mathematical specification of the Byron era chain-level rules.

	[Byron ledger specification](https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/byronLedgerSpec/latest/download-by-type/doc-pdf/ledger-spec): the formal mathematical specification of the Byron era ledger rules.

	[Byron binary format specification (CDDL)](https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/blocksCDDLSpec/latest/download-by-type/doc-pdf/binary): the binary formats for the Byron ledger using CBOR CDDL schema notation.

	[Explanation of the small-step-semantics framework](https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/semanticsSpec/latest/download-by-type/doc-pdf/semantics-spec): a guide to the notation and style used by our ledger rules.

In addition, there is a formalization of the Ledger Specification in Isabelle/HOL which can be found [here](https://github.com/input-output-hk/fm-ledger-formalization).

Repository structure

This repo contains formal (LaTeX) and executable (Haskell model) specs for both
the Byron and Shelley eras of Cardano. The outline of the specs is as follows:

	[byron](./byron)
- [ledger](./byron/ledger)

	[formal-spec](./byron/ledger/formal-spec)

	[executable-spec](./byron/ledger/executable-spec)

	[chain](./byron/chain)
- [formal-spec](./byron/chain/formal-spec)
- [executable-spec](./byron/chain/executable-spec)

	[shelley](./shelley)
- [design-spec](./shelley/design-spec)
- [chain-and-ledger](./shelley/chain-and-ledger) (specs are combined in Shelley era)

	[formal-spec](./shelley/chain-and-ledger/formal-spec)

	[executable-spec](./shelley/chain-and-ledger/executable-spec)

	[dependencies](./shelley/chain-and-ledger/dependencies)

Build tools

For building LaTeX documents we use
[nix](https://nixos.org/nix/download.html). Haskell files can be built either
with nix or [stack](https://docs.haskellstack.org/en/stable/README/).

When using nix it is recommended that you setup the cache, so that it can
reuse built artifacts, reducing the compilation times dramatically:

If you are using [NixOS](https://nixos.org/) add the snippet below to your
/etc/nixos/configuration.nix:

```
nix.binaryCaches = [


“https://cache.nixos.org”
“https://hydra.iohk.io”




];


	nix.binaryCachePublicKeys = [
	“hydra.iohk.io:f/Ea+s+dFdN+3Y/G+FDgSq+a5NEWhJGzdjvKNGv0/EQ=”






];

If you are using the nix package manager next to another operating system put
the following in /etc/nix/nix.conf if you have a system-wide nix
installation , or in ~/.config/nix/nix.conf if you have a local installation:

`
substituters        = https://hydra.iohk.io https://cache.nixos.org/
trusted-public-keys = hydra.iohk.io:f/Ea+s+dFdN+3Y/G+FDgSq+a5NEWhJGzdjvKNGv0/EQ= cache.nixos.org-1:6NCHdD59X431o0gWypbMrAURkbJ16ZPMQFGspcDShjY=
`

## Building the LaTeX documents and executable specifications

When using nix the documents and executable specifications can be readily
built by running:

`shell
nix build
`

The LaTeX documents will be places inside directories named result*, e.g.:

`shell
result-2/ledger-spec.pdf
result-3/delegation_design_spec.pdf
result-4/non-integer-calculations.pdf
result-5/small-step-semantics.pdf
result-6/ledger-spec.pdf
result/blockchain-spec.pdf
`

## Building individual LaTeX documents

Change to the latex directory where the latex document is (e.g. shelley/chain-and-ledger/formal-spec
for the ledger specification corresponding to the Shelley release, or
byron/ledger/formal-spec for the ledger specification corresponding to
the Byron release). Then, build the latex document by running:

`shell
nix-shell --pure --run make
`

For a continuous compilation of the LaTeX file run:

`shell
nix-shell --pure --run "make watch"
`

## Testing the Haskell executable specifications

Change to the directory where the executable specifications are (e.g.
shelley/chain-and-ledger/executable-spec for the executable ledger specifications corresponding to
the Shelley release, or byron/ledger/executable-spec for the executable ledger specifications
corresponding to the Byron release). Then the tests can be run by executing:

`shell
stack test
`

Note that the tests in shelley-spec-ledger require two Ruby gems,
[cbor-diag](https://rubygems.org/gems/cbor-diag) and
[cddl](https://rubygems.org/gems/cddl).

For the executable models test suites that use tasty (e.g. Byron), it is possible to select which
tests to run by passing the -p flag to the test program, followed by an awk pattern. For
instance for running only the UTxO tests, we can pass the -p UTxO option. tasty allows for
more [complex patterns](https://github.com/feuerbach/tasty#patterns), for instance, to run only the
update mechanism tests for the ledger that classify traces, we can pass the -p $1 ~ /Ledger/ && $2
~ /Update/ && $3 ~ /classified/ option. Here each $i refers to a level in the tests names
hierarchy. Passing -l to tasty will list the available test names.

When testing using stack, pay special attention to escaping the right symbols, e.g.:

`sh
stack test byron-spec-ledger:test:byron-spec-ledger-test --ta "-p \"\$1 ~ /Ledger/ \&\& \$2 ~ /Update/ \&\& \$3 ~ /classified/\""
`

Additionally, the Shelley tests are grouped into test scenarios,
ContinuousIntegration, Development, Nightly, and Fast,
which can be run with the –scenario flag. For example:

`sh
stack test shelley-spec-ledger --ta --scenario=Nightly
`

Alternatively, it is also possible to use ghcid if it is installed in your system. In this case,
it can be helpful to run ghcid in a separate shell:

`shell
make ghcid
`

or with tests included:

`shell
make ghcid-test
`

—

# nix-build Infrastructure

The artifacts in this repository can be built and tested using nix. This is
additionally used by the Hydra CI to test building, including cross-compilation
for other systems.

## To add a new Haskell project

To add a new Haskell project, you should do the following:


	Create the project in the usual way. It should have an appropriate .cabal file.


	Add the project to the [top-level stack.yaml](./stack.yaml), configuring
dependencies etc as needed. If your project’s configuration deviates too far
from the [snapshot in
``cardano-prelude`](https://github.com/input-output-hk/cardano-prelude/blob/master/snapshot.yaml),
then you may have to submit a PR there to update that snapshot.


	At this point, test that your new project builds using stack build <project_name>.


	Run [nix-shell ./nix -A iohkNix.stack-cabal-sync-shell –run scripts/stack-cabal_config_check.sh](./scripts/stack-cabal_config_check.sh)





script to check and report your change from stack.yaml to cabal.project.





	Run the [regenerate](./nix/regenerate.sh) script to
update sha256 checksums in cabal.project.





	Test that you can build your new project by running the following: nix build
-f default.nix libs.<project_name>. If you have executables, then
you may also try building these using the exes.<executable_name>
attribute path. A good way to see what’s available is to execute :l
default.nix in nix repl. This will allow you to explore the potential
attribute names.





	If you want your product to be tested by CI, add it to
[release.nix](./release.nix) using the format specified in that file.




## To add a new LaTeX specification

To add a new LaTeX specification, the easiest way is to copy from one of the
existing specifications. You will want the Makefile and default.nix (say
from [the Shelley ledger spec](./shelley/chain-and-ledger/formal-spec)).


	Copy these files into the root of your new LaTeX specification.


	Modify the DOCNAME in the Makefile.


	Update default.nix to:
1. Make sure that the relative path in the first line is pointing to


(default.nix)[./default.nix]. This is used to pin the
nixpkgs version used to build the LaTeX specifications.





	Update the buildInputs to add in any LaTeX packages you need in your
document, and remove any unneeded ones.


	Alter the meta description field to reflect the nature of this document.






	Add a link to the package at the bottom of [default.nix](./default.nix),
following the existing examples.


	To require that your specification be built in CI, add it at the end of the
list in [default.nix](./default.nix) following the existing examples.




## Additional documentation

You can find additional documentation on the nix infrastructure used in this
repo in the following places:


	[The haskell.nix user guide](https://github.com/input-output-hk/haskell.nix/blob/documentation/docs/user-guide.md)


	[The nix-tools repository](https://github.com/input-output-hk/nix-tools)


	[The iohk-nix repository](https://github.com/input-output-hk/iohk-nix)




Note that the user guide linked above is incomplete and does not correctly refer
to projects built using iohk-nix, as this one is. A certain amount of trial
and error may be required to make substantive changes!


	<p align=”center”>
	
	<a href=”https://github.com/input-output-hk/cardano-ledger-specs/blob/master/LICENSE”>
	<img src=”https://img.shields.io/github/license/input-output-hk/cardano-ledger-specs.svg?style=for-the-badge”/>





</a>





</p>

# Contributing

## Code formatting

We use [editorconfig](https://editorconfig.org/) to ensure consistency in the format of our
Haskell code. There are editorconfig plugins for several text editors, so make sure that your editor
honors the configuration in [.editorconfig](.editorconfig).

Additionally, we use [stylish-haskell](https://github.com/jaspervdj/stylish-haskell/) to format
grouped imports and language pragmas. There is a [.stylish-haskell.yaml](.stylish-haskell.yaml)
configuration file that determines how stylish-haskell formats the code. Make sure that you have a
recent version of stylish-haskell installed and that your editor enforces the rules defined by the
.stylish-haskell.yaml configuration file.

The stylish-haskell configuration prioritizes “diff-safety”: it should introduce only minimal
changes, to avoid polluting our diffs with irrelevant information.

For Emacs, we provide [directory
variables](https://www.gnu.org/software/emacs/manual/html_node/emacs/Directory-Variables.html) to
set the stylish-haskell options for this project, so that stylish-haskell does not need to be
enabled globally (see [.dir-locals.el](.dir-locals.el)).




            

          

      

      

    

  

    
      
          
            
  # Concrete implementation decisions

This file is a repository to capture concrete decisions that have to be made in
order to implement the specs found in this repo. The idea here is that we have a
record of extra decisions which are outside of the scope of the formal spec.

When such a case is found a section should be added to this document outlining
the decision made and the section of the spec or rule that the decision
corresponds to. In a specific format:

## Format

The format is similar to the Architectural Decision Record [^1] used in issues
in the wallet. This consists of:

### Context

<!– WHEN PROPOSED
A few sentences outlining the decision to be made and the section of the spec
the decision relates to.
Give any elements that help understanding where this issue comes from. Leave no
room for suggestions or implicit deduction.
–>

#### Decision

<!– WHEN PROPOSED
Give details about the architectural decision and what it is doing. Be
extensive: use schemas and references when possible.
–>

### PR

<!– WHEN IN PROGRESS
List of all PRs related to this ticket including the PR proposing the decision.

e.g.


Number                                       | Base            |

—                                          | —             |

https://github.com/some/other-repo/issues/14 | develop       |

#42                                          | release/2.0.0 |



–>

### Development Plan

<!– WHEN IN PROGRESS If the proposal is non trivial add details of intended
implementation in the form of a TODO list, explain how the ticket is going to be
tackled and how you intend to proceed.

e.g.


	[ ] I intend to extend the existing handlers and use the wallet layer to implement
the necessary steps.


	[ ] I plan on testing the endpoint by adding a few integration scenarios




–>

### Implications

<!– WHEN CLOSED Any ongoing implications of this decision might have in future.
In some cases the decision made will warrant further work later or has
ramifications for the future that should be recorded here. e.g.


	Turns out the wallet layer wasn’t implemented at all so this has to be done as an extra step.


	Integration tests are running but now takes an unexpected long time. I’ll open a ticket to investigate
this regression.




–>

## Process

This file should be edited by adding a section matching the format above in a PR
against this repo. The PR should reference and issues in the implementation repo.

After that there are a few options:

### The decision is agreed to

THe proposal becomes the choice for concrete implementations henceforth. The PR
is approved and merged

### The decision needs refinement

This refinement is discused in the PR proposing the decision, the section is
ammended until we agree on the decision (this should be timeboxed) as we can
always revisit any decisions.

[^1]: https://adr.github.io/

## Decisions

This is the section that should be appended to when decisions are made

### This is where the title goes

#### Context

#### Decision

#### PR


Number                                       | Base            |

—                                          | —             |

https://github.com/some/other-repo/issues/14 | develop       |

#42                                          | release/2.0.0 |



#### Development Plan

#### Implications



            

          

      

      

    

  

    
      
          
            
  # Formal and executable specifications for the cardano chain

This directory is organized as follows:


	[ledger/formal-spec](ledger/formal-spec) contains the LaTeX specification of Cardano
ledger semantics.


	[ledger/executable-spec](ledger/executable-spec) contains an executable specification of Cardano
ledger semantics.


	[chain/formal-spec](chain/formal-spec) contains the LaTeX specification of Cardano
chain semantics.


	[chain/executable-spec](chain/executable-spec) contains an executable specification of Cardano chain
semantics.




## Building the documents

To build the LaTeX document run:

`shell
nix-shell --pure --run make
`

For a continuous compilation of the LaTeX file run:

`shell
nix-shell --pure --run "make watch"
`

## Building the executable specification

The executable specifications can be built and tested using
[Nix](https://nixos.org/nix/).

To build to go to the directory in which the executable specifications are
(e.g. [ledger/executable-spec](ledger/executable-spec)) and then run:

`sh
nix-build
`

To start a REPL first make sure to run the configure script:

`sh
nix-shell --pure --run "runhaskell Setup.hs configure"
`

then run:

`sh
nix-shell --pure --run "runhaskell Setup.hs repl"
`

To test run:

`sh
nix-shell --pure --run "runhaskell Setup.hs test"
`

### Development

For running the tests you can use:

`sh
nix-shell --pure --command "cabal new-test <target>"
`

Example, while in the byron/ledger/executable-spec directory one can run:

`sh
nix-shell --pure --run "cabal new-test ledger-delegation-test"
`

To have the warnings not being treated as errors the development flag can be
used, e.g.:

`sh
nix-shell --pure --run "cabal new-test ledger-delegation-test -fdevelopment"
`



            

          

      

      

    

  

    
      
          
            
  # CDDL spec

The current binary format is specified in byron.cddl. You can use this
to generate (pseudo-)valid blocks:

`shell
nix-shell
cddl byron.cddl generate | diag2pretty.rb > test.pretty
`

By default these are produced in [CBOR Diagnostic
notation](https://tools.ietf.org/html/rfc7049#section-6), so you can use
diag2pretty.rb or diag2cbor.rb to convert them to a pretty-printed or binary
encoded CBOR format respectively.

The CDDL tools may also be used to validate existing blocks:

`shell
cddl byron.cddl validate test.block
`



            

          

      

      

    

  

    
      
          
            
  # Revision history for byron-spec-chain

## 0.1.0.0 – 2018-11-06


	First version. Released on an unsuspecting world.






            

          

      

      

    

  

    
      
          
            
  # cardano-crypto-wrapper

The cryptographic primitives used in Cardano


	Cryptographic hashing, using the [cryptonite] library.


	Secure generation of cryptographically random numbers and `ByteString`s.


	Hierarchical derivation functionality for Hierarchical Deterministic key
creation, for the wallet.


	Cryptographic signing and signature checking.


	To/FromCBOR (see the cardano-binary package) instances for the
cryptographic data types.




[cryptonite]: https://hackage.haskell.org/package/cryptonite



            

          

      

      

    

  

    
      
          
            
  # Revision history for byron-spec-ledger

## 0.1.0.0 – YYYY-mm-dd


	First version. Released on an unsuspecting world.






            

          

      

      

    

  

    
      
          
            
  # cardano-ledger

This package contains the validation rules for the Cardano Ledger. The rules
define state transition systems that describe how to validate new blocks and
transaction, and how to extend the ledger. They are an implementation of the
formal specification defined in
[cardano-ledger-specs](https://github.com/input-output-hk/cardano-ledger-specs).



            

          

      

      

    

  

    
      
          
            
  # Address Discrimination (NetworkMagic)

Address discrimination was a problem in the original
[cardano-sl](https://github.com/input-output-hk/cardano-sl) implementation
that came to our attention in mid-2018. This document briefly describes the
problem as well as the solution implemented.

For those with access to IOHK’s old internal issue tracker, YouTrack, all of
the nitty-gritty details can still be found under issues CO-353 and
CO-354.

## The Problem

In the original cardano-sl design, there was no way of distinguishing
between addresses of different networks. This was undesirable because, for
example, it was totally valid for a user to attempt a transfer of funds from a
mainnet/staging address to a testnet address and vice versa which could result
in a loss of those funds.

## The Solution

Our solution was to introduce a new field to addresses which would contain a
specified protocol magic value (a magic value used to distinguish between
networks). That way, we could check the protocol magic values contained within
each address when validating transactions.

However, because pre-existing mainnet and staging addresses would not contain
this new field, we had to ensure that its inclusion would be optional in order
to maintain backward compatibility.

### NetworkMagic

Given these requirements, we introduced a new data type to be used in
representing this new field in each address:

```
data NetworkMagic

= NetworkMainOrStage
| NetworkTestnet !Word32


```

NetworkMagic effectively represents an _optional_ protocol magic ID value.
Depending on the type of network, NetworkMagic is utilized in different ways
with regard to its inclusion in addresses:



	For maintaining backward compatibility, all mainnet and staging addresses




must not contain a network magic, i.e. they would contain a value of
NetworkMainOrStage.


	All testnet addresses must contain a network magic, i.e. they would




contain a value of NetworkTestnet. At the time, we decided that it wasn’t
necessary to maintain backward compatibility with pre-existing testnet
addresses.




### RequiresNetworkMagic

We also required a way to specify, via the node’s configuration, whether a
network requires the inclusion of network magic in its addresses. Thus, we
introduced a new data type, RequiresNetworkMagic:

```
data RequiresNetworkMagic

= RequiresNoMagic
| RequiresMagic


```

We also added a RequiresNetworkMagic field to the ProtocolMagic data type.
The ProtocolMagic data type would now contain two fields for which values
would be specified in the configuration:



	One field for RequiresNetworkMagic which is specified in the node’s




configuration.


	One field for the actual protocol magic ID (essentially a Word32) which




is specified in the genesis configuration.




Here’s a simplified version of the ProtocolMagic data type to display the
result of adding this new field:

`
data ProtocolMagic = ProtocolMagic !Word32 !RequiresNetworkMagic
`

One might question why we didn’t just allow the NetworkMagic value to be
specified in the node’s configuration as opposed to adding this new
RequiresNetworkMagic type. After all, this would clearly indicate whether
the network requires a NetworkMagic value to be serialized in its addresses
since there are only two clear cases:



	NetworkMainOrStage - No network magic value serialized in addresses.


	NetworkTestnet !Word32 - Network magic value serialized in addresses.







However, the problem with this is that, in the NetworkTestnet case, the
configuration could potentially specify a Word32 value that differs from
the protocol magic ID value already specified in the immutable genesis
configuration. Because these values _must_ be the same, we figured it’d make
sense to limit the potential for human error and, instead, derive the
NetworkMagic value from the ProtocolMagic whenever necessary.

Here’s a simplified version of how this derivation might look:

```
makeNetworkMagic :: ProtocolMagic -> NetworkMagic
makeNetworkMagic (ProtocolMagic pmId reqNetMagic) = case reqNetMagic of

RequiresNoMagic -> NetworkMainOrStage
RequiresMagic -> NetworkTestnet pmId


```

### Transaction Validation With Address Discrimination

With the “address discrimination” functionality:



	You cannot transfer funds from a mainnet/staging address to a testnet




address as the testnet address will include a NetworkMagic while the
mainnet/staging node’s configuration specifies that it RequiresNoMagic.


	You cannot transfer funds from a testnet address to a mainnet/staging




address as the mainnet/staging address does not include a NetworkMagic
while the testnet node’s configuration specifies that it RequiresMagic.


	You cannot transfer funds between addresses that were generated on




different testnets as their NetworkMagic values will not all be equal.






            

          

      

      

    

  

    
      
          
            
  # Revision history for small-steps

## 0.1.0.0 – YYYY-mm-dd


	First version. Released on an unsuspecting world.






            

          

      

      

    

  

    
      
          
            
  # Changelog for non-integer

## Unreleased changes



            

          

      

      

    

  

    
      
          
            
  # non-integer



            

          

      

      

    

  

    
      
          
            
  # Benchmarking

## Running with Stack

The benchmark suite can be run from the command line with:

`shell
stack bench
`

The benchmark groups can be specified by name, eg:

`shell
stack bench --ba 'utxo'
stack bench --ba 'stake-key/register'
`

More output is available by specifying at html output file:

`shell
stack bench --ba --output=bench.html
`



            

          

      

      

    

  

    
      
          
            
  # Changelog

## 2019-03-22
- The blockchain layer for the spec has been completed and polished.
- There are now operational certificates and key evolving signatures.

## 2019-03-01
- Added the blockchain layer to the spec for Praos, including a new top-level transition CHAIN.

## 2019-02-20
- Calculating the stake distribution uses relations.
- The prose now makes heavy use of bullet point lists that follow the order in the tables.
- Helper functions have been separated and labeled as such.
- The “Rewards Ledger Update” section was removed, and the logic was placed elsewhere.
The predicate in transition DELRWDS, namely checking that the reward withdrawal in a transaction
matched that in the ledger state, was moved to the base case of DELEGS.
The state transformation, namely zeroing out the appropriate rewards,
was also moved to the base case of DELEGS.
- Added a list of contributors.
- The UTxOEP and ACCNT transition systems were combined.
- The predicate in POOLCLEAN that requires that the current retiring pools not be the empty set
- POOLCLEAN was renamed to POOLREAP.
has been removed
- The NEWPP transition now performs a no-op when costs are not met
(so that the transition system does not halt).
- All the definitions regarding addresses are now in a single table.
- Enterprise addresses were added.
- All the definitions regarding the protocol parameters are now in a single table.
- E_max is now a protocol parameter.
- The certificate pointers are now constructed in the DELEGS transition.
- Coin is now defined as an alias for the integers.
- All the definitions regarding transactions are now in a single table.
- Transactions are now a concrete type.
- Transaction witnesses are now defined as a mapping from VKey`s to `Sig.
- We now require that the transaction witnesses be exactly the minimal set that is needed.
- The Allocs type is now split into StakeKeys and StakePools.
- Support for pool owners was added. All rewards for pool oweners go to the reward account
registered in the pool certificate.
- Unrealized rewards are now given to the treasury.
- Some values marked as belonging to the unit interval have been changed to non-negative reals.
- Reward accounts are now included in the stake distribution.
- The reward calculation no longer returns the updated moving averages.
- Several references to the delegation design document were added.
- When a pool retires, all delegations to the pool are removed from the delegation mapping.
- The main epoch boundary transition system is now split into two transitions.
There is now a top level transition SNAP which calculates and saves the last three stake distributions.
This transition does _not_ happen on the epoch boundary.
The transition which does occur on the epoch boundary now uses the stake distribution snapshots
for the reward calculation.
- The number of slots per epoch is now a global constant.
- The epoch boundary transition now uses an epoch number instead of a slot in the environment.
It represents the upcomming epoch number.
- This changelog was added.

## 2019-01-03
This update was cosmetic.


	Descriptions were added to the reward calculations.


	Several spelling and grammar mistakes were fixed.


	A few typos in the reward calculation were fixed.


	Git references where added to the title page.


	Color and bolding was added to the state transitions.




## 2018-12-21
The initial formal specification of the ledger was released.



            

          

      

      

    

  

    
      
          
            
  # Ledger and Epoch State Validity

We only care that the properties below are satisfied for _valid_ ledger states, and
more generally, valid _epoch_ states. Checking things for invalid states should
not be performed. As the STS rule system we have defined
is deterministic, all valid states can be reached using the transitions in the system,
and the only states that are valid are those that can be described by a sequence
of rule applications (i.e. a composition of valid transitions).

# Preservation of Value

Recall that there are six pots of money in the Shelley ledger:


	Circulation (total value of the UTxO)


	Deposits


	Fees


	Rewards (total value of the reward accounts)


	Reserves


	Treasury




For each transition system, we will list what pots are in scope,
describe how value moves between the pots,
and state any relevant properties (usually the preservation of ADA).

### Transitions with no pots in scope


	Up


	Ppup


	Avup


	Prtcl


	Overlay


	Updn


	Ocert


	Rupd




### UTXO, UTXOW

Pots in scope: Circulation, Deposits, Fees

Value can be transferred between Circulation and Deposits.
Value can also be transferred to the Fees, but Fees can only
be increased by this transition.

Property The value (Circulation + Deposits + Fees) increases by the sum
of the withdrawals in the transaction. Note that Circulation decreases
due to transaction fees and certificate deposits, and can increase
through the certificate refunds.

Property Fees does not decrease.

### DELEG, POOL, DELPL

Pots in scope: Rewards

Property The rewards to do not change (both as an aggregated value
and as individual balances).

Note: here we consider elements that are not present to have a value of 0. On
the implementation there is a difference between an element which is not present
in the rewards map and an element with a 0 rewards balance.

### DELEGS

Pots in scope: Rewards

Property The reward pot is decreased by the sum of the withdrawals in the
transaction (in the environment).

### POOLREAP

Pots in scope: All

This transition returns a portion of the the pool certificate deposit to the correct
reward address, provided it is still registered. Otherwise it is given to the treasury.
The total is deducted from the deposit pot.

Property The value Deposits is non-negative.

Property (Full Preservation of ADA)
The value (Circulation + Deposit + Fees + Treasury + Rewards + Reserves) is the same
before and after the transition.

### LEDGER, LEDGERS, BBODY

Pots in scope: Circulation, Deposits, Fees, Rewards

The value lost by UTXO is balanced by the value gained by DELEGS.

Property The value (Circulation + Deposits + Fees + Rewards) is the same
before and after the transition.

### NEWEPOCH

Pots in scope: All

Besides using the EPOCH transition, NEWEPOCH applies a reward update.
The reward update decreases the reserves and the fee pot,
but increases the treasury and the reward pot.

Property The value (Reserves + Fees + Treasury + Rewards) is the same
before and after the transition.

Property The Circulation and Deposits do not change.

### SNAP

Pots in scope: Circulation, Deposits, Fees

The snapshot transition moves decayed deposits from the deposit pot to
the fee pot.

Property The Deposits value decreases by the amount that Fees increases.

### NEWPP

Pots in scope: Circulation, Deposits, Fees, Treasury, Reserves

The new protocol parameter transition adjusts the deposit pot to meet
the current obligation, and the difference is made up by the reserves.

Property The value (Deposits + Reserves) is the same
before and after the transition. Note that it is possible for Deposits
to increase or decrease.

Property The values Circulation, Fees, and Treasury do not change.

### EPOCH

Pots in scope: All

With respect to the pots, the EPOCH transition uses each of the following
once: SNAP, POOLREAP, and NEWPP.

Property (Full Preservation of ADA)

### TICK

Pots in scope: All

With respect to the pots, the TICK transition uses each of the following
once: NEWEPOCH and RU.

Property (Full Preservation of ADA)

### CHAIN

Pots in scope: All

With respect to the pots, the CHAIN transition uses each of the following
of HEAD, PTRCL, and BBODY.

Property (Full Preservation of ADA)

### Slots and Epochs

As an easy consequence of the Full Preservation of ADA for the CHAIN
transition is the following:

Property (Full Preservation of ADA) The total amount of ADA in the system
(Circulation + Deposit + Fees + Treasury + Rewards + Reserves),
remains constant at each slot and at each epoch.

# Time Traveling Header Properties

We need to adapt properties 1 -3, from section 8 of the byron chain spec, to Shelley.

# Update Properties

Property
There can be at most one change to the protocol parameters per epoch.
Moreover, the protocol parameter update state is always empty at begining of epoch.

Property
If there are no pending future application versions,
there will not be a change to the version for at least SlotsPerEpoch.

Property
Updating the software versions, without updating the protocol version,
results in no change to the transition systems.
Note that changes to the transition system resulting from a new
protocol version will be difficult to state formally, since this
depends on logic in the software changing the ledger rules.

Definition
Let num-genesis be the number of genesis nodes
(concretely this value is seven).

Definition
Let quorum be the number of genesis nodes needed for consensus
on votes (concretely this value is five).

Property
If there are only (quorum -1)-many gen keys active, there can be no new future
application version or protocol parameters.

Property

Property
The keys (of type Slot) of the following two mappings are always past the current slot:
the future application versions (favs) and the future genesis delegation mapping (fGenDelegs).
The favs slots can appear in any current or future epoch, but the fGenDelegs slots
can be at most one epoch into the future.

Property
The size of the mappings PPUpdate, inside the update state, is always at most (num-genesis - 1).

Property
The size of the mappings AVUpdate, inside the update state, is always at most num-genesis.

# Epoch Boundary Transition Properties

Property The NEWEPOCH transition can always be invoked at the epoch boundary
(i.e. when e = e_l + 1). Thus, the transitions it depends on, SNAP, POOLREAP, NEWPP,
and EPOCH, can always be invoked as well. Note that when no blocks are produced,
the CHAIN rule is blocked and NEWEPOCH never fires.

Transitions SNAP, POOLREAP, and EPOCH have no preconditions in the
antecedents of their rules. NEWPP has two associated rules, and the disjunction of the
preconditions in these rules is a tautology. We justify
the non-blocking of these rules by this reasoning.

# Deposits Properties

Property
The deposits pot is always greater that the current obligation
(ie the total amount of coin needed to refund every stake registration and
pool registration certificate that are currently registered).
In particular, the UTXO and POOLREAP rule can never result in a
negative value for deposits.

# Staking Properties

Consistency Property for Boundary Case
If no stake keys are registered, the rewards from the reward update
will always sum to zero.

Property
If no stake pools are registered, the rewards from the reward update
will always sum to zero.

Property
The sum of stake in the stake snapshots is always at most forty-five billion ADA.

Property
The following delegation mappings always has the same size:
stkCreds, rewards, and ptrs.
Moreover, the key set of stkCreds is the same
as the range of ptrs, which also corresponds one-one with the reward addresses
in rewards. Finally, the key set of delegations is a subset of that of stkCreds.

Property
If all stake keys and pools deregister, then, assuming that no one registers anything,
by epoch e+1, where e is the max epoch in the stake pool retirement mapping,
the delegation state will be nearly empty. More precisely,
the mappings stkCreds, rewards, delegations, ptrs, stpools, poolParams,
and retiring are all the empty map.
(The map cs will have size seven, for the genesis keys.)

# Genesis Node Property

Property
The size of the genesis delegation mapping genDelegs is always num-genesis.
Note that the value num-genesis can be given as the size of the
mapping inherited from Byron.

# Entropy Properties

Consistency Property
In the absence of the extra entropy parameter,
the epoch nonce is what you get from combining the blocks leading up to it
(and stopping StabilityWindow-many slots in the previous epoch).

# Decentralization Properties

Consistency Property
The overlay schedule is obeyed: no blocks are produced during the silent blocks,
and only core nodes makes blocks on the overlay slots.

# Rewards Properties

Property
At the start of each epoch, the reward update is set to NOTHING.
Moreover, the reward update will change exactly once during the epoch,
to a non-NOTHING value.

Property
All members of stake pools that did not meet their pledges will receive zero
rewards for the epoch.

# Block Header Properties

Consistency Property
The body size and block body hash listed in the block header are correct.
Correct refers to the two predicates given in the BBODY transition.

# Block Count Properties

Property
The number of blocks made in an epoch is equal to number of active overlay slots plus
the sum of the values in the BlocksMade mapping.

Property
The number blocks made in an epoch is never greater than the number of slots in an epoch.

# Authorization Properties

TODO - Without just restating predicates already in our rules, how can we
state properties stating that UTxO transfer, certificates, etc, are properly authorized?

# Praos Properties

_The following Properties are taken from the Ouroboros Praos Document.  Not all of them will reflect
into ledger properties, but we should record them somewhere since they will be overall concerns that
should be driving tests/proofs. _

Persistence and Liveness seem to be the key properties of interest.

Some questions:

What does semisynchronous actually mean?
What implications does this protocol have for performance?
What are acceptable values for various system protocol parameters?

The following are examples of things that should be part of some overview document


	potentially, multiple slot leaders may be elected for a particular slot (forming a slot leader set);


	frequently, slots will have no leaders assigned to them; and


	a priori, only a slot leader is aware that it is indeed a leader for a given slot; this assignment is unknown to all the other stakeholders—including other slot leaders of the same slot—until the other stakeholders receive a valid block from this slot leader.




Independent aggregation property (Property 2)

Page 10:  The probability of a stakeholder becoming a slot leader in a particular slot is independent of whether this stakeholder acts as a single party in the protocol, or splits its stake among several “virtual” parties.

_This is a technical property that may have some deeper implications.
Invariance of selection rule under arbitrary reassignment of stake._

Strong consistency between theoretical and real world experiments

Page 11: Any property of the protocol that we prove true in the hybrid experiment (such as achieving common prefix, chain growth and chain quality) will remain true (with overwhelming probability) in the setting where FVRF and FKES are replaced by their real-world implementations—in the so-called real experiment (p.11).  Argued in Theorems 1 & 2.

“Small” Divergence

Page 16: With high probability, the characteristic strings induced by protocol πSPoS have small divergence and hence provide strong guarantees on common prefix.

_”small” needs to be quantified - is this an absolute measure, or relative to a period of time (epoch, system, slot)
- we might be able to ensure specific levels of divergence throughout a slot for example_

Subadditivity of φ

Page 17: Proposition 1. The function φf (α) satisfies the following properties. 􏰍􏰎

φ
􏰓α =1−􏰔(1−φ (α))≤􏰓φ (α), α ≥0, fififii
iii
φf(α) = φf(α) ≥ α, α ∈ [0,1].
(5)
(6)

_Proposition 1 needs to be embedded in the spec (true by design and construction?)_

Common prefix

Page 19: There is a low probability of violating the common prefix condition.

Theorem 5 (Common prefix). Let k,R,∆ ∈ N and ε ∈ (0,1). Let A be an α-dominated adversary against the protocol πSPoS for some α satisfying α(1−f)∆ ≥ (1+ε)/2. Then the probability that A, when executed in a ∆-semisynchronous environment, makes πSPoS violate the common prefix property with parameter k throughout a period of R slots is no more than exp(ln R + ∆ − Ω(k)). The constant hidden by the Ω(·)-notation depends on ε.

_This is a key property.  It may be necessary to test this rather than proving it.  It should be embedded by design in the spec.  Note that the three properties in this section use exponentials. How does this relate to the non-integer calcs?_

Chain growth

Page 20: The length of the chain grows by at least the number of slots.

Theorem 6 (Chain growth). Let k, R, ∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary against the protocol πSPoS for some α > 0. Then the probability that A, when executed in a ∆-semi- synchronous environment, makes πSPoS violate the chain growth property with parameters s ≥ 4∆ and τ = cα/4 throughout a period of R slots, is no more than exp (−cαs/(20∆) + ln R∆ + O(1)), where c denotes the constant c:=c(f,∆)=f(1−f)∆.

_This is a key property that is worth verifying/proving.  It might also form the basis for progress/productivity._

Chain quality

Page 21: There is a low probability of violating the chain property condition.

Theorem 7 (Chain quality). Let k, R, ∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary against the protocol πSPoS for some α > 0 satisfying α(1−f)∆ ≥ (1+ε)/2. Then the probability that A, when executed in a ∆-semisynchronous environment, makes πSPoS violate the chain quality property with parameters k and μ = 1/k throughout a period of R slots, is no more than exp(ln R − Ω(k)).

_Another key property.  Approach should be similar to common prefix._

Probability Calculations

Page 21 contains two displayed conditions that could be used to generate tests to confirm correct probabilities.

R∆ exp(−cα(s − 3∆)/(20∆)) = exp(−cα(s − 3∆)/(20∆) + ln R∆)

Pr [g(x) ≤ b(x)] ≤ Pr [g(x) ≤ b(x)]
x←Df x←Dαf

Theorem 8

Page 22: Every adaptive adversary A that corrupts at most (1−α)-fraction of stake throughout the whole execution is α-dominated.

_Is this related to the slot leadership?
Is the corruption monitored/verified/avoided somehow?  Or is it just a condition/assumption?_

Participation

Page 25: It is sufficient for an honest stakeholder to join at the beginning of each epoch, determine whether she belongs to the slot leader set for any slots within this epoch (using the Eval interface of FVRF), and then come online and act on those slots while maintaining online presence at least every k slots.

_It’s not obvious from this whether a non-participating actor could disrupt the system (e.g. by
causing timeslot problems).  Does non-participation imply loss of benefit?  Do we need to assure
adequate participation by all stakeholders?  Can we use the assumption to help ensure progress?
Also what happens if a slot leader fails to participate?
Some of these discussions may be in the design document?_

Theorem 9

Page 26: The protocol πDPoS, with access to Fτ,r , with τ ≤ 8k/(1 + ε) satisfies persistence with parameters RLB
k and liveness under specific conditions.

_Theorem 9 is the main persistence and liveness property.
I assume this has been evaluated empirically (graph of probabilities/simulation).
Are there any false independence assumptions?
Liveness refers to honest actors and transactions.  If there are no honest transactions,
there will presumably be no growth?
What assumptions are being made here in terms of deadlock, availability etc.
(these could have a major impact on system viability_

Key pair correctness

Page 30: Correctness: for every key pair (KES.sk1,KES.vk) ← Gen(1k,T), every message m and every
time period j ≤ T , VerifyKES.vk (m, SignKES.skj (m)) = 1

_Check assumptions.  The proof should be by construction and design if the spec is consistent with the Praos document._

Test Properties

Page 33/34:  Various possible attacks are given.  The protocol implementation should defend against these.

_These look like ways to drive test case generation_

#Multi-signature properties

Sufficient Signatures are Provided to authorise Multi-Signature Transactions

Outputs of transactions that require multiple signatures will be “locked” against use until at least the
required number of signatures is provided.

_This should come by construction from the rules in the multi-sig spec._



            

          

      

      

    

  

    
      
          
            
  # Delegation Design Document Changelog

## 2020-06-12
Rewrote the chapter on addresses. Now includes multi-sig, and is clearly separating addresses (payment and stake) and credentials.

## 2020-02-28
Clarify when we use active stake vs total stake.

## 2019-06-07
Update section on script addresses.

## 2019-05-17
Some clarifications in response to review by the auditors.

## 2019-04-11
Some subtle corrections in the rewards chapter after review by Aikaterina.

First version officially published on the IOHK blog.

## 2019-04-08
General review of the document.

Mostly small things. Consistent wording, spelling, readability, removed some
obsolete things.

Removed the remaining todo items. Decisions we still need to make are now
tracked on github instead.

Moved the section on detecting stale stake into an appendix, and changed it to
reflect the design where stake that is not delegated to an active pool is
ignored (which solves the problem of stale stake to a large degree).

## 2019-04-05
Rewrote the chapter on rewards.

We had lots of discussions about how to properly account for the performance of
pools, particularly in Praos where the actual performance is not observable due
to the private leader schedule. We finally converged to a solution, leading to a
re-write of the incentives section.

Also, changed the title of the document, and made the capitalisation of ada
consistent.

## 2019-03-01
Incorporating further input from the workshop in Berlin, and following discussions,
into the document.


	Decision: transactions have to have at least one UTxO style input


	Update: Stake pool metadata

Specify the format for the metadata, and how it is provided. Streamlined the
different sections that touch stake pool metadata.



	Elaborating further on why stake pool registrations will not be censored.


	Capture choice of KES scheme in design doc.


	Streamlining information on deposits


Replacing an explanation of the concept with a link to the section where it’s
already explained.






	Elaborate on certificate replay protection


The paragraph was not entirely true, it said there was only one possible source
of funds in addition to UTxO entries, but with rewards accounts, there is
another one.






	Fix that rewards go to treasury if reward key unregistered.


We can not move them to the rewards pool – if we did, it would create an
incentive for all other leaders to censor a certificate that caused the pool to
use a valid certificate.






	Update block validity to require operational key


	
	Additions to Operational Key section
	
	They are compulsory


	They will use KES


	Operational Key Certificates will expire, to encourage key rotation


	Slight Change in validity rules










	Add FAQ section to the delegation design doc


	Add a couple of todo entries




## 2019-01-08
Changes after the second day of the Berlin workshop.


	Avoid overloading the term “pool”


	Clarify that Treasury is a Sink for now.


	Avoid Contention at Epoch Boundary


	Decision made: refund for stake pool paid after retirement.


	Update to non-refundable part of deposits

We figured out in the formal spec how to incrementally add the non-refundable
part to the reward pool of all the relevant epochs, which is fairer than
adding all of it to the reward pool where the resource is released.



	Correction: we’re introducing four address types, not three




## 2019-01-07
Changes after the first day of the Berlin workshop.


	Add todo to clarify stakepool metadata


	Add section on TTL for transactions


	Elaboration and slight change to stake pool registration.

After the first day of discussions in Berlin, we came to the conclusions that


	we need a _registered_ staking key to collect rewards


	this should _not_ be the same key that’s used for participating in the
protocol. For participation in the protocol, we want cold and operational
keys, and using the same key to withdraw rewards is detrimental.


	We needed more elaboration on the multiple owner use case, emphasising that
the rewards for all owners are given to the operator.






	Resolved several todo items


	Include git revision in documents


	Explain why pool registration will not be censored.




## 2018-12-18
First version that is considered stable enough to warrant V1. Some things still
need to be pinned down.



            

          

      

      

    

  

    
      
          
            
  # Summary

Reward withdrawals in the Haskell model; Began integrating the STS framework
from cardano-chain into Haskell model; Reworked the reward withdrawals in the
latex spec to align with our new plan for them.

# PRs and issues completed


Issue | PR | Summary |



|-------|—-|---------|
|       | x | [Anytime rewards rules #113](https://github.com/input-output-hk/cardano-ledger-specs/pull/113) |
|       | x | [experiment to try small step sem. with lhs2tex #114](https://github.com/input-output-hk/cardano-ledger-specs/pull/114) |
|       | x | [STS implementation of UTXO rule #115](https://github.com/input-output-hk/cardano-ledger-specs/pull/115) |
|       | x | [Use lenses from mircolens where appropriate #116](https://github.com/input-output-hk/cardano-ledger-specs/pull/116) |
|       | x | [adding reward withdrawals #120](https://github.com/input-output-hk/cardano-ledger-specs/pull/120) |
|       | x | [Update UTXO rule for new STS framework #121](https://github.com/input-output-hk/cardano-ledger-specs/pull/121) |
| x     |   | [Reward Withdrawals (executable model) #88](https://github.com/input-output-hk/cardano-ledger-specs/issues/88) |

# Milestone status

List of all milestones

## [Milestone title](https://github.com/input-output-hk/repo/milestone/1)

Summary of underway milestone


Title                             | Value      |



|-----------------------------------|————|
| Start Date                        | YYYY-MM-DD |
| Target end Date                   | YYYY-MM-DD |
| Estimated end Date                | YYYY-MM-DD |
| Issues Completed this week        | 1          |
| Total issues (complete/remaining) | 5/10       |

## [Milestone title](https://github.com/input-output-hk/repo/milestone/2)

No started yet

# Epic status

## [Epic title](https://github.com/input-output-hk/repo/issues/1)


Title                             | Value |



|-----------------------------------|——-|
| Issues Completed this week        | 1     |
| Total issues (complete/remaining) | 5/10  |

## [Epic title](https://github.com/input-output-hk/repo/issues/2)

Not started yet

# Lessons learned from last week



	When challenges come up while working on an issue, then create a new issue
for this with additional estimation


	Connect PRs to issues, can be several PRs for one issue







# Things to try next week



	Think about merging cardano-ledger-specs into cardano-chain









            

          

      

      

    

  

    
      
          
            
  # Summary

Pointer addresses were added to the latex spec, along with general polishing of the document. More instances of STS semantics were added to the Haskell model, and now only the epoch boundary transitions remain.

# PRs and issues completed


Issue/PR | Summary | Epic | Contributors | Created | Finished | Comments|



|----------|———|------|————–|---------|———-|---------|
| [68](https://github.com/input-output-hk/cardano-ledger-specs/issues/68) | Build instance of STS semantics for executable spec / generators | | [mgudemann](https://github.com/mgudemann) | 2018-11-09 | 2018-12-20 | |
| [117](https://github.com/input-output-hk/cardano-ledger-specs/issues/117) | Add pointer/base address structure (LaTeX) | | [polinavino](https://github.com/polinavino) | 2018-12-10 | 2018-12-20 | |
| [122](https://github.com/input-output-hk/cardano-ledger-specs/issues/122) | review first draft of delegation spec | | [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-12 | 2018-12-20 | |
| [126](https://github.com/input-output-hk/cardano-ledger-specs/issues/126) | add fees and deposits to UTxOState | | [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-13 | 2018-12-20 | |
| [135](https://github.com/input-output-hk/cardano-ledger-specs/issues/135) | swap created and destroyed names in haskell model | | [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-17 | 2018-12-20 | |

# Lessons learned from last week



	Better communication in team about existing issues







# Things to try next week



	Think about merging cardano-ledger-specs into cardano-chain









            

          

      

      

    

  

    
      
          
            
  # Summary
In the last week of 2018 we finished a first version of the ledger spec. This included adding the active stake calculations, the reward calculations, and the exponential moving averages. Explanations were also added for these. On the executable spec side, we added STS instances for everything. In 2019, after the Berlin workshop, we began making changes that originated from the big review. In particular, we combined some transition systems and began re-organizing the tables.

# PRs and issues completed


Issue/PR | Summary | Epic | Contributors | Created | Finished | Comments|



|----------|———|------|————–|---------|———-|---------|
| [15](https://github.com/input-output-hk/cardano-ledger-specs/issues/15) | add address types to the ledger rules | | |2018-10-19 | 2019-01-17 | |
| [63](https://github.com/input-output-hk/cardano-ledger-specs/issues/63) | Implement Property 7.1 once deposit / rewards are modelled in the executable spec | | |2018-11-08 | 2019-01-17 | |
| [109](https://github.com/input-output-hk/cardano-ledger-specs/issues/109) | witnessing in the executable model | | [mgudemann](https://github.com/mgudemann) | 2018-12-03 | 2019-01-17 | |
| [141](https://github.com/input-output-hk/cardano-ledger-specs/pull/141) | Explain why pool registration will not be censored. | | [kantp](https://github.com/kantp) | 2018-12-19 | 2018-12-20 | |
| [142](https://github.com/input-output-hk/cardano-ledger-specs/pull/142) | stake distribution calculation | | [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-19 | 2018-12-20 | |
| [144](https://github.com/input-output-hk/cardano-ledger-specs/pull/144) | Finish STS rule implementations for LEDGER | | [mgudemann](https://github.com/mgudemann) | 2018-12-20 | 2018-12-20 | |
| [145](https://github.com/input-output-hk/cardano-ledger-specs/pull/145) | Add weekly report 2018-12-20 | | [mgudemann](https://github.com/mgudemann) | 2018-12-20 | 2018-12-20 | |
| [146](https://github.com/input-output-hk/cardano-ledger-specs/issues/146) | Complete STS rules with epoch boundary rules | | [mgudemann](https://github.com/mgudemann) | 2018-12-21 | 2019-01-17 | |
| [147](https://github.com/input-output-hk/cardano-ledger-specs/pull/147) | Stake distribution prose added | | [polinavino](https://github.com/polinavino), [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-21 | 2018-12-21 | |
| [148](https://github.com/input-output-hk/cardano-ledger-specs/pull/148) | Correct a few typos in doc | | [mgudemann](https://github.com/mgudemann), [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-21 | 2018-12-21 | |
| [149](https://github.com/input-output-hk/cardano-ledger-specs/pull/149) | reward calculation | | [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-21 | 2018-12-21 | |
| [150](https://github.com/input-output-hk/cardano-ledger-specs/issues/150) | reward calculation in spec | | [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-21 | 2019-01-17 | |
| [151](https://github.com/input-output-hk/cardano-ledger-specs/pull/151) | Rewards calculations prose | | [polinavino](https://github.com/polinavino) | 2018-12-30 | 2019-01-02 | |
| [152](https://github.com/input-output-hk/cardano-ledger-specs/pull/152) | Property-based test for Balance Preservation property | | [mgudemann](https://github.com/mgudemann) | 2019-01-02 | 2019-01-02 | |
| [153](https://github.com/input-output-hk/cardano-ledger-specs/pull/153) | Include git revision in documents | | [kantp](https://github.com/kantp), [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-02 | 2019-01-02 | |
| [154](https://github.com/input-output-hk/cardano-ledger-specs/issues/154) | Reward calculation prose | | [polinavino](https://github.com/polinavino) | 2019-01-02 | 2019-01-17 | |
| [155](https://github.com/input-output-hk/cardano-ledger-specs/pull/155) | Run languagetool on Latex Spec | | [mgudemann](https://github.com/mgudemann) | 2019-01-03 | 2019-01-03 | |
| [156](https://github.com/input-output-hk/cardano-ledger-specs/pull/156) | Get nix-shell working for gitinfo2 | | [ruhatch](https://github.com/ruhatch), [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-03 | 2019-01-03 | |
| [157](https://github.com/input-output-hk/cardano-ledger-specs/pull/157) | version 1.1 | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-03 | 2019-01-04 | |
| [158](https://github.com/input-output-hk/cardano-ledger-specs/pull/158) | latex build scripts | | [disassembler](https://github.com/disassembler), [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-03 | 2019-01-13 | |
| [160](https://github.com/input-output-hk/cardano-ledger-specs/pull/160) | Add Ptr type to LedgerState | | [mgudemann](https://github.com/mgudemann) | 2019-01-04 | 2019-01-04 | |
| [161](https://github.com/input-output-hk/cardano-ledger-specs/pull/161) | Fix shell.nix for the delegation design spec. | | [dnadales](https://github.com/dnadales), [nc6](https://github.com/nc6) | 2019-01-07 | 2019-01-09 | |
| [162](https://github.com/input-output-hk/cardano-ledger-specs/pull/162) | Changes to the design doc after day 1 of on-site discussion | | [kantp](https://github.com/kantp) | 2019-01-07 | 2019-01-10 | |
| [163](https://github.com/input-output-hk/cardano-ledger-specs/pull/163) | Add functions for stake distribution calculation | | [mgudemann](https://github.com/mgudemann) | 2019-01-08 | 2019-01-09 | |
| [164](https://github.com/input-output-hk/cardano-ledger-specs/pull/164) | Latex/several small edits | | [JaredCorduan](https://github.com/JaredCorduan), [nc6](https://github.com/nc6) | 2019-01-08 | 2019-01-09 | |
| [165](https://github.com/input-output-hk/cardano-ledger-specs/pull/165) | Add a pretty diagram of the fund movement from Berlin workshop. | | [nc6](https://github.com/nc6), [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-09 | 2019-01-15 | |
| [166](https://github.com/input-output-hk/cardano-ledger-specs/pull/166) | Implement functions for epoch boundary | | [mgudemann](https://github.com/mgudemann) | 2019-01-09 | 2019-01-10 | |
| [167](https://github.com/input-output-hk/cardano-ledger-specs/pull/167) | Add: Add an outline for making concrete decisions | | [boothead](https://github.com/boothead), [kantp](https://github.com/kantp) | 2019-01-11 | 2019-01-11 | |
| [169](https://github.com/input-output-hk/cardano-ledger-specs/pull/169) | Rename PrtclConsts to PParams | | [mgudemann](https://github.com/mgudemann) | 2019-01-11 | 2019-01-14 | |
| [171](https://github.com/input-output-hk/cardano-ledger-specs/pull/171) | Add types for unit intervals | | [mgudemann](https://github.com/mgudemann) | 2019-01-11 | 2019-01-14 | |
| [172](https://github.com/input-output-hk/cardano-ledger-specs/pull/172) | Add reward splitting functions | | [mgudemann](https://github.com/mgudemann) | 2019-01-11 | 2019-01-14 | |
| [173](https://github.com/input-output-hk/cardano-ledger-specs/pull/173) | Add functions for reward calculation | | [mgudemann](https://github.com/mgudemann) | 2019-01-14 | 2019-01-14 | |
| [174](https://github.com/input-output-hk/cardano-ledger-specs/issues/174) | group addresses | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-17 | |
| [184](https://github.com/input-output-hk/cardano-ledger-specs/issues/184) | Remove “rewards ledger update” section | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-17 | |
| [190](https://github.com/input-output-hk/cardano-ledger-specs/issues/190) | combine epoch calc UTxO and Account transitions | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-17 | |
| [195](https://github.com/input-output-hk/cardano-ledger-specs/issues/195) | split NEWPC transition into two rules | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-15 | 2019-01-17 | |
| [197](https://github.com/input-output-hk/cardano-ledger-specs/pull/197) | remove the “rewards ledger update” section | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-15 | 2019-01-16 | |
| [198](https://github.com/input-output-hk/cardano-ledger-specs/pull/198) | adding list of contributors | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-16 | 2019-01-16 | |
| [199](https://github.com/input-output-hk/cardano-ledger-specs/pull/199) | combine the UTxOEP and ACCNT transtions | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-16 | 2019-01-17 | |
| [200](https://github.com/input-output-hk/cardano-ledger-specs/pull/200) | NEWPC transition is a no-op when costs are not met | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-16 | 2019-01-17 | |
| [201](https://github.com/input-output-hk/cardano-ledger-specs/pull/201) | consolidate all address definitions into one table | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-16 | 2019-01-17 | |
| [202](https://github.com/input-output-hk/cardano-ledger-specs/pull/202) | Implement STS rules for epoch boundary | | [mgudemann](https://github.com/mgudemann) | 2019-01-17 | 2019-01-17 | |

# Lessons learned from last week

# Things to try next week



            

          

      

      

    

  

    
      
          
            
  # Summary

About half of the issues from the Berlin Workshop have now been resolved.  The UTxO transition rules have been simplified, including the witnessing rules, all the address definitions have been grouped together, all the transaction definitions have been grouped, all the protocol parameters have been grouped, and there was a lot of small clean-up.

Additionally, we have been working on the non-integral calculations in the Haskell model, in order to address issue related to using real numbers.

# PRs and issues completed

input-output-hk/cardano-ledger-specs
| Issue/PR | Summary | Epic | Contributors | Created | Finished | Comments|
|----------|———|------|————–|---------|———-|---------|
| [143](https://github.com/input-output-hk/cardano-ledger-specs/issues/143) | enterprise addresses | | |2018-12-19 | 2019-01-18 | |
| [170](https://github.com/input-output-hk/cardano-ledger-specs/issues/170) | make Tx type in ledger concrete | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-11 | 2019-01-22 | |
| [175](https://github.com/input-output-hk/cardano-ledger-specs/issues/175) | Group Tx components. | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-22 | |
| [176](https://github.com/input-output-hk/cardano-ledger-specs/issues/176) | separate Allocs type into stake keys and pool keys | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-24 | |
| [178](https://github.com/input-output-hk/cardano-ledger-specs/issues/178) | Pass pointer as environment | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-18 | |
| [181](https://github.com/input-output-hk/cardano-ledger-specs/issues/181) | Coin type wraps the integers | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-18 | |
| [183](https://github.com/input-output-hk/cardano-ledger-specs/issues/183) | Pool names to Pot | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-18 | |
| [185](https://github.com/input-output-hk/cardano-ledger-specs/issues/185) | bare minimum witnesses | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-22 | |
| [196](https://github.com/input-output-hk/cardano-ledger-specs/issues/196) | Minor suggested wording tweaks | | |2019-01-15 | 2019-01-22 | |
| [204](https://github.com/input-output-hk/cardano-ledger-specs/issues/204) | Group protocol parameters | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-17 | 2019-01-18 | |
| [205](https://github.com/input-output-hk/cardano-ledger-specs/pull/205) | Latex/consolidated proto params | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-17 | 2019-01-18 | |
| [208](https://github.com/input-output-hk/cardano-ledger-specs/pull/208) | consolidate Tx definitions into one table | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-18 | 2019-01-22 | |
| [209](https://github.com/input-output-hk/cardano-ledger-specs/pull/209) | Allocs type split into StakeKeys and StakePools | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-22 | 2019-01-23 | |

# Lessons learned from last week

# Things to try next week



            

          

      

      

    

  

    
      
          
            
  # Summary

We worked on finishing the changes decided in the Berlin workshop. We also added
a first section on non-integral calculations and numerical properties of
functions.

We have added properties

# PRs and issues completed

input-output-hk/cardano-ledger-specs
| Issue/PR | Summary | Epic | Contributors | Created | Finished | Comments|
|----------|———|------|————–|---------|———-|---------|
| [177](https://github.com/input-output-hk/cardano-ledger-specs/issues/177) | unit interval should sometimes be the non-negative reals | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-28 | |
| [186](https://github.com/input-output-hk/cardano-ledger-specs/issues/186) | reward calculation clean-up | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-28 | |
| [187](https://github.com/input-output-hk/cardano-ledger-specs/issues/187) | reward calculation should use reward accounts | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-28 | |
| [188](https://github.com/input-output-hk/cardano-ledger-specs/issues/188) | Reward calculation coupling of stake distribution and moving average | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-28 | |
| [189](https://github.com/input-output-hk/cardano-ledger-specs/issues/189) | Pool owners and pool reward accounts | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-28 | |
| [191](https://github.com/input-output-hk/cardano-ledger-specs/issues/191) | connect reward calc functions to the design doc | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-28 | |
| [194](https://github.com/input-output-hk/cardano-ledger-specs/issues/194) | unrealized max rewards go to the treasury | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-15 | 2019-01-28 | |
| [212](https://github.com/input-output-hk/cardano-ledger-specs/pull/212) | Reworking the reward calculation | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-24 | 2019-01-28 | |
| [213](https://github.com/input-output-hk/cardano-ledger-specs/pull/213) | Split Allocs into seprate types for stake keys and stake pools | | [mgudemann](https://github.com/mgudemann) | 2019-01-28 | 2019-01-28 | |
| [214](https://github.com/input-output-hk/cardano-ledger-specs/pull/214) | Use Avgs instead of Distr, relax contraints to non-negative | | [mgudemann](https://github.com/mgudemann) | 2019-01-28 | 2019-01-28 | |
| [215](https://github.com/input-output-hk/cardano-ledger-specs/pull/215) | Add section on non-integral calculations to document | | [mgudemann](https://github.com/mgudemann) | 2019-01-28 | 2019-01-28 | |
| [216](https://github.com/input-output-hk/cardano-ledger-specs/pull/216) | Use synctex in ledger-spec pdf | | [mgudemann](https://github.com/mgudemann) | 2019-01-29 | 2019-01-29 | |
| [218](https://github.com/input-output-hk/cardano-ledger-specs/pull/218) | Properties on the calculation functions | | [mgudemann](https://github.com/mgudemann) | 2019-01-31 | 2019-01-31 | |

# Lessons learned from last week

# Things to try next week



            

          

      

      

    

  

    
      
          
            
  # Summary

We finished the remaining issue brought up in the Berlin Workshop, and synced
the executable model with the spec.

# PRs and issues completed

input-output-hk/cardano-ledger-specs
| Issue/PR | Summary | Epic | Contributors | Created | Finished | Comments|
|----------|———|------|————–|---------|———-|---------|
| [118](https://github.com/input-output-hk/cardano-ledger-specs/issues/118) | Add stake distribution cache (LaTeX) | | [polinavino](https://github.com/polinavino), [JaredCorduan](https://github.com/JaredCorduan) | 2018-12-10 | 2019-02-04 | |
| [179](https://github.com/input-output-hk/cardano-ledger-specs/issues/179) | No dangling delegation maps | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-02-01 | |
| [180](https://github.com/input-output-hk/cardano-ledger-specs/issues/180) | add epoch to environment instead of calculating it | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-02-06 | |
| [182](https://github.com/input-output-hk/cardano-ledger-specs/issues/182) | separate helper/private methods | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-02-01 | |
| [192](https://github.com/input-output-hk/cardano-ledger-specs/issues/192) | Save stake distribution snapshots | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-01-31 | |
| [193](https://github.com/input-output-hk/cardano-ledger-specs/issues/193) | bullet point / separated prose to match tabels | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-14 | 2019-02-01 | |
| [210](https://github.com/input-output-hk/cardano-ledger-specs/pull/210) | Non-integer calculations | | [mgudemann](https://github.com/mgudemann) | 2019-01-23 | 2019-02-05 | |
| [217](https://github.com/input-output-hk/cardano-ledger-specs/pull/217) | reordering prose and adding pool refunds | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-29 | 2019-02-01 | |
| [220](https://github.com/input-output-hk/cardano-ledger-specs/pull/220) | Stake distribution snapshots | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-01-31 | 2019-02-04 | |
| [221](https://github.com/input-output-hk/cardano-ledger-specs/pull/221) | Some formalized proofs for numerical properties | | [mgudemann](https://github.com/mgudemann) | 2019-02-01 | 2019-02-01 | |
| [222](https://github.com/input-output-hk/cardano-ledger-specs/issues/222) | incorrect pledge comparison | | |2019-02-05 | 2019-02-06 | |
| [223](https://github.com/input-output-hk/cardano-ledger-specs/pull/223) | Redo epochs and slots | | [JaredCorduan](https://github.com/JaredCorduan) | 2019-02-05 | 2019-02-06 | |
| [224](https://github.com/input-output-hk/cardano-ledger-specs/pull/224) | Update STS rules to updated specification | | [mgudemann](https://github.com/mgudemann) | 2019-02-06 | 2019-02-06 | |
| [225](https://github.com/input-output-hk/cardano-ledger-specs/pull/225) | Cleanup warnings / add documentation to non-integer | | [mgudemann](https://github.com/mgudemann) | 2019-02-06 | 2019-02-07 | |
| [226](https://github.com/input-output-hk/cardano-ledger-specs/pull/226) | Converge model and executable spec | | [mgudemann](https://github.com/mgudemann) | 2019-02-07 | 2019-02-07 | |

# Lessons learned from last week

# Things to try next week



            

          

      

      

    

  _static/minus.png





_static/plus.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

